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Abstract 

The aim of this paper is to find classical counterparts of pure quantum states. It is shown 
that these are singular probability distributions concentrated on the so-called maximal 
null manifolds in a phase space. They are equivalent to densities studied by Van Vleck 
and Schiller and to WKB solutions (cf. Van Vleck, 1928; Schiller, 1962). Properties of 
such distributions and their relativistic generalisations have been studied in previous 
papers (Stawianowski, 1971; Siawianowski, 1972). However, it has not been shown 
there that such distributions arise actually in the limit h -+ 0. When working with the 
standard apparatus of differential geometry we mostly use the language of Kobayashi & 
Nomizu (1963). 

I. Introduction 

In  this paper  we restrict ourselves to systems of  classical analogy only. 
It  is well known that  in the limit h -+ 0 quan tum mechanics of  such systems 
asymptotically approaches classical statistical mechanics. These relationships 
become as apparent  as possible when the formulat ion of  quantum mech- 
anics due to Moyal,  Weyl and Wigner is used (Moyal,  1949; Weyl, 1931). 

Probabili ty distributions over a phase space are classical counterparts  o f  
quan tum states. I t  is known that  pure states possess maximum information.  
Thus, it seems reasonable to conjecture that  their classical counterparts  are 
distributions, or  measures, concentrated on submanifolds of  lower dimen- 
sion. One commonly  believes that  they are Dirac measures, i.e. their 
supports are single points in a phase space. 

In  spite o f  these views we are going to show that  quasiclassical probabili ty 
distributions corresponding to pure states are concentrated on the so-called 
maximal null manifolds (Stawianowski, 1971; Tulczyjew, unpublished 
lectures). Thus to any quasiclassical pure state there is attached some set 
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of the usual, classical states--a null manifold in a phase space. Each of 
these classical states is taken with its own statistical weight. Thus, classical 
states, i.e. points in a phase space, are 'hidden parameters' of quasiclassical 
ones. 

In previous papers (Slawianowski, 1971; S1awianowski, 1972) we 
quoted f o r m a l  arguments in support of such views. One could mean that 
the rigorous limit-transition h --~ 0 is sufficient to make a p h y s i c a l  choice 
between the analogies mentioned. Unfortunately it is not the case. In 
quantum mechanics, pure states possess many equivalent properties which 
could be used to define them. For example: 

(i) pure states possess the maximum of information, 
(ii) they are described by means of idempotent density operators, 

(iii) their density operators satisfy maximal systems of independent 
eigenequations (in operator formulation of quantum mechanics). 

All these properties possess classical counterparts which can be found by 
taking the limit h -+ 0. The classical pure states could be defined as prob- 
ability distributions satisfying 'classical translations' of some of conditions 
(i), (ii) and (iii) above. Unfortunately, on the classical level, these conditions 
fail to be equivalent. This qualitative discontinuity of the limit-transition 
h --~ 0 forces us to guess the following riddle: Which of the properties (i), 
(ii) or (iii) have to be translated into classical language in order to obtain 
a satisfactory definition of classical pure states ? Below, we show which 
conditions lead to null manifolds and which to points in a phase space. 
The first of them seem to be more physical. Besides, they are compatible 
with the quasMassical behaviour of exact quantum Moyal-Wigner densi- 
ties, which were found b e f o r e  taking the limit h - +  0. For example, the 
quantum state of definite momentum P is described by the following 
Moyal-Wigner density function: 

P P ( q ' , P , )  = ~ ( P l  - P 1 )  . . . ~ (Po  - Pn)  

where n is the number of degrees of freedom. The distribution Pe retains 
this form in the classical limit when h tends to zero or, equivalently, when 
quantum numbers tend to infinity. Thus it is valid on the classical level as 
well. But its support is just the maximal null manifold of definite momen- 
tum and is described by equations: 

p ~ = P ,  i =  1,2 . . . .  , n  

The above example is rather trivial, but we show that in the classical 
limit all Moyal-Wigner distributions become concentrated around appro- 
priate null manifolds. Moreover, probability distributions over null 
manifolds lead to densities of Van Vleck and, equivalently, WKB solutions. 
On the contrary, we do not know any interesting consequence of the 
currently used analogy between pure states and points of the phase space. 
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2. Pure Quantum States 

Before studying classical counterparts we survey the usual properties of 
pure quantum states. Our aim in this chapter is to describe them in terms 
of such physical concepts as information and symmetry. 

Let d be an algebra of bounded operators on a Hilbert space. Its 
hermitean dements correspond to physical quantities. Quantum states are 
described by hermitean and positively definite density operators. For  
simplicity we assume d is finite-dimensional (a system of spins, e.g.) 

Pure states may be defined in two equivalent ways: 

(1) Their density operators are idempotent: 

pp = p (2.1) 

(2) They possess the maximum of information, i.e. their entropy does 
vanish: 

S(p) = -Tr(p in p) = 0 (2.2) 

Both (2.1) and (2.2) are untenable for our study of classical counterparts. 
The purely mathematical condition (2.1) does not use any physical concepts 
at all. The concept of information, such as occurs in (2.2), although a 
physical one, is still too abstract. In our opinion it is more physical to 
define pure states as those giving a unique answer on the maximal number 
of questions (measurements). 

A physical quantity A ~ d takes a value a ~ SpA on the state p ~ d if 
and only if the following operator eigenequation is satisfied: 

Ap = ap (2.3) 

Both A, p are hermitean; thus, combining (2.3) with its hermitean conjugate 
equation, one obtains: 

~/[A, p] = (2.4) 0 

invariant under a one-parameter unitary group This means that p is 
generated by A : 

exp [ - ~ tAl p exp Is tA ] = p (2.5) 

for arbitrary t ~ R t. 
Thus, in quantum mechanics, the concepts of information and symmetry 

are closely related to each other. The lack of statistical dispersion of 
physical quantity A on the state p implies in the invariance of p under the 
group generated infinitesimally by A. 

In general, density operators satisfying (2.3) describe mixed states. To 
eliminate mixed solutions of (2.3) it is necessary to add sufficient similar 
equations. More strictly, a density operator p represents a pure state if and 
only if it satisfies a maximal system of independent eigenequations: 

( A ,  - a i )  p = 0 ,  i = 1 ,  2 . . . .  , N ( 2 . 6 )  
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The word 'maximal' in the above statement means that operators (At - at) 
generate a maximal left ideal in d .  Thus, any consistent system of eigen- 
equations, 

(At - at) x = 0, Fx = 0 

is equivalent to the first of them alone, 

(At - a0 x = 0 

Hence there exist operators F~ ~ d ,  i = 1, 2 . . . .  , N, such that: 

F = Ft(Ai - at) 

The accuracy of the above description of  pure states follows easily from 
the properties of the canonical basis in H+-algebra (Ambrose, 1945; 
Loomis, 1953). 

Let us observe the following consequences of the maximal system (2.6): 

1 
ffi [At, p] = 0 (2.7) 

1 [At,  = C j(Ak - -  ak) (2.8) 
hi 

where C~ are arbitrary operators (Dirac, 1964). 
All the above statements may be summarised as follows: 

Proposition 1 

(i) A density operator p describes a pure state if and only if the subset 
E o = {F ~ d :  Fp = 0} is a maximal left ideal in d .  

(ii) A real linear subspace of Ep composed of  hermitean operators 
is a Lie subalgebra of ~r in the sense of the quantum Poisson bracket 

1 E 
~i [ , GI ~ Eo 

provided F, G ~ Ep and both F, G are hermitean. 
(iii) p is an invariant of Lie subalgebra Ep, i.e. 

I [ F ,  pl = 0 

provided F is a hermitean element of Ep. 

In conclusion, we note that the pure states possess two fundamental 
physical properties: maximum information and symmetry.  The second 
property is implied by the first one. Let us briefly summarise them: 

(A) Max imum information: p describes a pure state if and only if the 
maximal system of eigenequations (2.6) is satisfied: 

A i p = a i p ,  i =  1 , 2 , . . . , N  

The operators (At - ai) appearing in (2.6) generate the maximal  left 
ideal E o in ~r 
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(B) The symmetry: p is invariant under all one-parameter unitary 
subgroups generated by hermitean elements of E o (for example 
by At). 

The currently used definition of pure states is based on (2.1) pp = p. It 
appears, however, that the description based on Proposition 1, although 
equivalent to (2.1), is much more physical. This point is of great importance 
in the study of classical counterparts. On the classical level, an equivalence 
of the approaches mentioned breaks down. Thus the more physical one 
has to be chosen. 

3. The Weyl Prescription and Classical Limit 

Let (P, 7) be a phase space, i.e. a smooth differential manifold P equipped 
with a non-degenerate and closed two-form y (SIawianowski, 1971). We 
also assume the existence of an affine structure in P. This means that P is a 
homogeneous space of a linear space of translations [7. All translations are 
assumed to be canonical mappings in P, i.e. they preserve y. A natural 
symplectic two-form induced by y on the space [7 will be denoted by F. 

) 
The only translation which maps Pl ~ P onto P2 ~ P is denoted byplp2 ~ [q. 

The formulation of quantum mechanics due to Moyal, Weyl and Wigner 
provides a convenient framework for studying quasiclassical problems. 
The reason is that this approach is formally analogous to classical statistical 
mechanics. For example, it makes use of the same classical phase space 
(P, ~). Physical quantities and statistical states (ensembles) are represented 
in both theories by real functions over P. The difference lies in algebraic 
structures which are surmised in the underlying set of functions. In classical 
algebra, the ordinary commutative multiplication of functions is used. The 
quantum theory is based on the non-local, non-commutative Weyl product. 
It is given by: 

(A n B) (p)  ~ h ]  f 2i -----> > = exp~(F ,p~p  ^p2p)  A(pl)B(p2)dp~dp2 (3.1) 

where dpi is an invariant measure on P. 
Both classical and quantum algebras make use of the same, natural 

hermitean involution and scalar product: 

= A*, (A[B)  = f A*(p)B(p)dp  (3.2) A + 

Thus, expectation values and probabilities of results of measurements are 
given by the same formulas in both theories: 

(A)o = <Alp), P(Pl, P2) = (P~IP2) 

(P(p~,pz) is the probability of finding the system in a statistical state, Pt, 
when it is known to be in a state P2)- The classical non-negative definiteness 
of probability distributions (p]A* A)  >~ 0 (for all functions of A), is replaced 

31 



456 JAN J. SLAWIANOWSKI 

in quantum theory by the following, similar property, (P lA* �9  A)>~ 0 
(for all functions of A). 

There exists an isomorphism, the so-called Weyl prescription, which 
maps the quantum algebra of functions on P onto the usual algebra 
of operators, d .  The inverse of the Weyl prescription carries over the full 
structure of ~ into the set of functions on P. For example, the complex 
conjugation of any function on P, and its integral over the phase space, 
correspond to the hermitean conjugation and to the trace of operators, 
respectively. The product of operators is represented by the Weyl product 
(3.1), and the quantum Poisson bracket by the following Moyal bracket: 

1 
~(A [] B - B [] A) (3.3) 

In the limit h -+ 0 the Weyl product of any smooth functions asymptotically 
approaches their usual, pointwise product. Similarly, the Moyal bracket 
tends to the classical Poisson bracket: 

1 
A D B ~ A B ,  ~ i ( A D B - - B D A ) ~  {A,B}, whenh-+0  (3.4) 

In such a way, in the limit h -*  0, quantum mechanics becomes asymp- 
totically equivalent to classical statistical mechanics. For example, the 
non-local and non-deterministic quantum Liouville equation 

Op 1 
a-i = ~ ( i 4  [] p - p [] x4 ) 

is then replaced by the classical one: 

Op 
o-7 = ( H ,  p} 

4. Classical Pure States 

In what follows, the Moyal-Wigner formulation of quantum mechanics 
is consequently used. 

ff p describes an eigenstate of physical quantity A, then (2.3) and (2.4) 
imply, via the Weyl prescription, 

A [] p = ap (4.1) 

~ ( A  [] p - p [] A) = (4.2) 0 

where a is an eigenvalue of the operator corresponding to A in the sense 
of the Weyl prescription. 
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The conditions above give an account of the two fundamental properties 
of eigenstates: the vanishing of statistical dispersion and symmetry. When 
h -+ 0, these conditions become 

A. p = ap (4.3) 

{A, p} = 0 (4.4) 
where a ~ A(P). 

It appears that physical interpretation of classical conditions (4.3) and 
(4.4) is the same as that of the quantum ones, (4.1) and (4.2). In fact (4.3) 
is equivalent to the vanishing of  dispersion of A on the classical statistical 
ensemble p. The function A takes a constant value a on the support of p. 
Therefore, one does not observe any statistical spread of results of measure- 
ments. Equation (4.4) means that p is invariant under a one-parameter 
group of canonical transformations generated by A. Thus, the physical 
interpretation of equations (4.1) and (4.2) in terms of information and 
symmetry does not change in the limit h -+ 0. On the contrary, the logical 
relationship of information and symmetry changes abruptly. Although 
(4.2) follows from (4.1) the corresponding classical equations (4.3) and 
(4.4) are independent. On the classical level, the correlation of information 
and symmetry breaks down. This phenomenon gives rise to unpleasant 
arbitrariness in the choice of classical counterparts of eigenstates. In 
quantum theory, eigenstates could be defined by means of (4.1) only; 
(4.2) was then satisfied automatically. A priori, it is not clear if, on the 
classical level, the definition of eigenstates has to use (4.3) only, or both 
(4.3) and (4.4). Physical reasons rather suggest the second possibility; 
(4.4) describes the physical property of symmetry, as does (4.2). Rejecting 
this equation one obtains a strange result that eigenstates lose their funda- 
mental physical symmetries in the classical limit. It is hard to accept this 
result. Thus, both formal and physical agreement with quantum concepts 
is attained when classical eigenstates are defined by means of both (4.3) 
and (4.4). 

Proposition 2 

A probability distribution p over a phase space P is a classical eigenstate 
of physical quantity A with an eigenvalue a ~ A(P) when the system of 
equations (4.3) and (4.4) is satisfied: 

A . p  =ap,  {A,p} = 0  

Equation (4.3) means that p vanishes beyond the subset 

Ma = {p ~ P: A(p) = a} 

Let us assume that the differential dA does not vanish identically in any 
open submanifold and, consequently, almost all Ma are hypersurfaces. This 
is true for all physical quantities of practical importance. Then (4.3) does not 
possess any physical solution in the class of ordinary functions. The only 
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solutions satisfying physical requirements of non-negative definiteness and 
normalisation are distributions 

p = F f ( A  - a) (4.5) 

When p, in addition, satisfies (4.4) then: 

(F, A}IM, = 0 

Proposition 3 

The classical eigenstates of physical quantity A, with an eigenvalue 
a E A(P), are given by: 

p = F 6 ( A  - a ) ,  where {F,A}IM.=O (4.6) 

(Assuming, A is not constant in any open subset, of  course.) 

Remark 

Instead of distributions, the differential forms on hypersurfaces could be 
used. Let O be an arbitrary (2n - 1) form satisfying 

7"=7  A . . .  ^ ~ = d A  ^ 0 (4.7) 

The form O(a,,) = O[Ma does not depend on any particular choice of O 
satisfying (4.7), thus it is characterised uniquely by A and a. It defines 
some probabilistic measure kta on M,. This measure is equal to that induced 
by 6(A - a), i.e. for any open subset V of M~ we have: 

+oo 

1 
.u.(V) = f O(a, . )= f 5 ( A - a ) 7 " = ~  f dk f e xp[ i k (A-a ) ]7  n 

V g - o o  V 

where 17 is an arbitrary open subset of P satisfying 17 f3 M~ = V. 
In a close analogy to quantum theory, classical pure states are defined as 

those satisfying maximal systems of 'eigenconditions' 

A~. p = aip (4.8) 

{A~, p} = 0, i = 1 ,2 , . . . ,  U (4.9) 

'Maximal' means here that any extended system of eigenconditions 

A t . x = a ~ x  F . x = O  
{A,, x} = 0 {F, x} = 0 

is consistent if and only if F = F J. (Aj - a j), where F i are some smooth 
functions on P. 

The classical properties of the Poisson bracket (Caratheodory, 1956; 
Whittaker, 1952; Stawianowski, 1971) imply that 

{ a ,  - a , ,  Ak --  ak} = { a t ,  A~} = C[k. ( a t  - at) ( 4 .10 )  

N = n = �89 d imP 

Thus the word 'maximal' now becomes exactly defined. It should be 
noticed, however, that our treatment is not very rigorous: we disregard 
degeneracy and all related global problems in P. 
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The most general probability distribution satisfying (4.8) and (4.9) is 
given by: 

p = a ~ ( A ~  - a ~ ) . . .  ~(A. - a.) 
where 

{~,A~}l/g, = 0, i =  1,2 . . . . .  n, 
and 

J#o={pEP:Af ip)=aj ,  j =  1 ,2 , . . . ,n}  

Hence it is enough to put # = F ( A I . . .  A,) in order to obtain the most 
general distribution p (F is any smooth function). 

Proposition 4 
A probability distribution p defined over 2n-dimensional phase space is 

a classical counterpart of pure quantum state if and only if there exist n 
independent functions A1 �9 �9 �9 A, such that 

p = F(A1...  A,) 6(A1)... 6(A,) (4.11) 
and 

{A,, As} = Cfj. Ak (4.12) 

where F and C~ are some smooth functions on R" and P respectively. 
Now, let us consider the following submanifold in a phase space P: 

Jg = {p ~P:Ai(p) =0, i =  1,2, . . . ,n} 

where A 1 , . . . ,  A, are functionally independent functions satisfying equa- 
tions (4.12). Those equations express the fact that the two-form ~ vanishes 
when restricted to submanifold Jg. Hence (4.12) may be written down as 
follows: 

~ 1 ~ = 0  

(Stawianowski, 1971). Thus ~ '  is a null submanifold of maximal dimension 
in P. Any two vectors u, v, tangent to ~#/and attached at the same point 
p ~ Jr are 7-orthogonal, i.e. 

<~p, u ^ v> = 0 

The property above gives an account of the geometric structure of  all. It 
appears that null submanifolds, independent of  their physical interpreta- 
tion, present interest for the pure mathematicians as well. 

The notion of null manifolds enables us to formulate the main result of 
our investigation as follows: 

Proposition 5 
Classical pure states are probability distributions concentrated on 

maximal null submanifolds in a phase space. 

It is not difficult to find a classical counterpart of Proposition 1 : 
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Proposition 6 
Let p be a probability distribution and E o an ideal in the associative 

algebra of smooth functions on P, defined as follows: 

Ep = {F ~ C| F. p = 0} 

Then p is a classical pure state if and only if gp is a maximal ideal being at 
the same time a Lie subalgebra of C~(P) in the sense of a Poisson bracket: 

{Fa, F2} e go, provided F1, F2 ~ go 

Obviously p is an invariant of go, 

Remark 
The word 'maximal' in propositions 5, 6 is used in the sense of dimension 

and functional independence respectively. Nevertheless, we suspect, it 
could be used literally, if we replaced C| by a class of analytic functions 
C~ and smooth submanifolds Jg by analytical ones. Obviously, P 
has to be assumed then to be an analytic manifold. 

The difference between Propositions 1 and 6 lies in the logical relationship 
between the structure of associative algebra and that of Lie algebra. In the 
classical limit those structures become separated. The quantum Poisson 
bracket is algebraically built of the associative Weyl product (3.1); on the 
other hand, the classical Poisson bracket and ordinary pointwise product 
are algebraically independent. This reflects the aforementioned inde- 
pendence of information and symmetry on the classical level. 

Neglecting (4.4) and using (4.3) only in the definition of classical eigen- 
states, one would obtain distributions concentrated on single points. In 
fact, the maximal number of independent 'eigenconditions' could be equal 
2n. The current analogy between pure states and points of the phase space 
overlooks the fundamental symmetry condition (4.4). 

The question arises if the idempotence condition (2.1) does not enable 
us to choose uniquely one of the mentioned analogies. However, it is not 
the case; (2.1) is compatible with both of them. 

5. Null Manifolds and the WKB Approximation 

Let us consider a mechanical system whose configuration space is an 
affine manifold Q. Affine coordinates in Q will be denoted by q l , . . . ,  q,. 
They induce, in a natural way, canonical coordinates q l , . . . ,  q", p~ . . . .  , p, 
in a phase space P = T* Q; obviously, ? = dp~ ^ dq i (Stawianowski, 1971). 
To make our notation less complicated we do not distinguish below 
between q~ and ql, although they are different functions defined on different 
manifolds ( ~ = q ~ o  z*, where z*: T ' Q - +  Q is the projection of the 
cotangent bundle onto its base). In what follows this simplification does 
not lead to misunderstandings. 

Let P be foliated by a family of orientable null manifolds ." 

J/l ,={p~P:A~(p)=a~, i = 1 , 2  . . . .  ,n} (5.1) 
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where a is a shorthand notation for (al, �9 �9 a,) and 

{Ai, A j} = 0 

Besides, we assume that all ~/a are images of cross-sections 

aa:Q-+ P = T *  Q 

(Stawianowski, 1971). Hence, equations (5.1) may be transformed into 

OS (q, a)] ///a = 0 (5.2) 

The distribution 5(A1 - a ~ ) . . .  6(A, - a,,) defines some measure on the 
manifold ~ , .  This measure admits an alternative description in terms of 
some differential n-form Oa on ~,'#a. This form is constructed similarly to 
that in the previous chapter. Obviously, O, is non-negative with respect 
to one of the two admissible orientations on ~'a. 

The cross-section aa : Q --~ P enables us to project Oa to Q: 

~ a  = a . * .  O .  

The form q/'a is equivalent to Van Vleck density (Van Vleck, 1928; Schiller, 
1962; Shwianowski, 1972), 

"Ua = det ~ (., a) dq 1 ^ . . .  ^ dq ~ (5.3) 
oq oa 

up to a non-essential constant factor (Stawianowski, 1972). 
Let us now build the following wave functions on Q: 

02 S i 2(det )exp ,  
They are easily recognised as WKB solutions of eigenequations 

~ 7ta = a~ 7Ja, i = 1 ,2 , . . . ,  n (5.5) 

where operators ,4~ correspond to functions Ai via the Weyl prescription. 
Thus our concept of classical pure states leads to densities discovered by 
Van Vleck in 1928, which are equivalent to WKB solutions. 

Let us now notice another interesting connection between null manifolds 
and wave functions. The Moyal-Wigner density corresponding to wave 
function 7 j is given by 

1 " T i . . 
+ 5-)d~ (5.6) 

(Moyal, 1949). (For brevity we do not distinguish between functions on 
manifolds and their expressions in coordinates). Let u s put 

7 /=  ~/(D) exp ~ S 

One supposes (in the WKB approximation) that both D, S do not depend 
on h. The independence of their physical interpretation of the Planck 
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constant is obvious even without appealing to WKB: the function D is a 
probability distribution for positions, S describes a spread of  momentum 
in the U-ensemble: 

aS 
(~IP, I ~'> = f D( q) ~q~ cl, q (5.7) 

where d,q is a translationally invariant measure on Q. Hence the physical 
interpretation of functions D, S is evidently independent of  h. 

Making use of  the aforementioned independence of functions D, S of h 
one finds, in the limit h ---> 0, 

p o ( q l , p , ) = l i m p ( q , p 3 =  ]~(q)]2 6 ( p l  OS (p  _ OS~ 
,--,o - g-qq~). . . 6 aq"]  (5.8) 

This means that Po is concentrated on the maximal null manifold ~ ' s ,  
given by equations 

(p, -b-q~q~]l s = 0 ,  i =  1,2 . . . . .  n (5.9) 

( 'Quantum'  properties of  such manifolds have been studied by Dirac and 
Synge.) The point with coordinates (q~,(OS/Oq~)) belongs to d / s  with the 
weight D(q) = }g~) 7t~). 

The Moyal-Wigner distributions corresponding to states of  definite 
momentum, or position, are concentrated on the appropriate null mani- 
folds on both the classical and quantum level. 
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